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Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide
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We propose a method of storage and reconstruction of a classical light pulse based on photorefractive
holography in a coupled-resonator optical waveguide~CROW!. Pulse propagation in a CROW is described in
the context of the tight-binding approximation; the use of a CROW results in a large reduction of the group
velocity, which is important for spatial compression of the optical pulses. Further, the efficiency of the pho-
torefractive effect is enhanced in a CROW, enabling quasistatic holographic grating formation using much
lower intensity optical pulses. We describe in detail the formation of a photorefractive index grating in a
CROW via interference with a reference pulse and the subsequent holographic reconstruction of the signal
pulse.
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Single pulse holographic recording requires strong non
ear properties which are not available with ordinary mate
als, since the hologram has only a short time and a lim
amount of energy in which to form. The highly nonline
properties of ultracold atomic vapors form the basis of o
approach which was demonstrated recently@1#. In this paper,
we investigate the possibility of recording and reconstruct
holograms of optical pulses using the recently propo
coupled-resonator optical waveguide~CROW! @2#. A CROW
consists of an array of weakly coupled high-Q resonators,
leading to very high optical intensities even at moder
~propagating! power levels—exactly what is required for ho
lographic recording. In the paper, we will find that in spite
the discrete localization of an optical field at the individu
resonators, it is still possible to reconstruct faithfully the s
nal pulse which is recorded in the hologram.

The particular structural realization of the CROW that w
consider is shown in Fig. 1, in which the individual reson
tors consist of defect cavities embedded in a tw
dimensional~2D! periodic structure~a 2D photonic crystal
@3#!. In our later discussion, the material of indexn2 will be
assumed to be photorefractive~e.g., GaAs! and the material
of index n1 will be assumed to be air, for simplicity. Not
that the defect cavity is then composed of photorefrac
material, and the simultaneous presence of two optical fie
in this region will induce a photorefractive index gratin
which can be used for holography. In order to describe
holographic storage and reconstruction of an optical pu
we first need to understand how an optical pulse with
known free-space description propagates in a CROW,
the form of the fields that write the index grating.

I. PULSE PROPAGATION IN A CROW

We briefly review the theory of optical pulse propagati
in the simplest of waveguides—one described satisfacto
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by a linear dispersion relationship@4#. The results and nota
tion established here will be of importance in the subsequ
discussion of pulse propagation in a CROW.

Consider an input pulseE(z50,t) described by

E~z50,t !5eiv0tE~z50,t ! ~1!

5eiv0t
1

2pE dV Ẽ~z50,V!eiVt, ~2!

where Ẽ(z50,V) is the Fourier transform of the envelop
E(z50,t):

Ẽ~z50,V!5E dt E~z50,t !e2 iVt. ~3!

The field at a distancez, expressed asE(z,t), is obtained by
multiplying each frequency component (v01V) by
exp@2ik(v01V)z#,

E~z,t !5eiv0t
1

2pE dV Ẽ~z50,V!eiVte2 ik(v01V)z, ~4!

//

FIG. 1. Schematic of a photorefractive CROW realized by
coupling of the individual defect cavities in a 2D photonic cryst
comprised of a photorefractive dielectric medium with high refra
tive index n2 and a nonphotorefractive dielectric medium of lo

refractive indexn1. The structure is periodic in theẑ direction, with
a spatial periodR.
©2001 The American Physical Society02-1
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SHAYAN MOOKHERJEA AND AMNON YARIV PHYSICAL REVIEW E 64 066602
wherek(v) is the wave vector at the optical frequencyv.
~We use the sign convention of Ref.@4#.!

If we expandk(v01V) nearv0 as

k~v01V!5k~v0!1
dk

dv U
v0

V1•••[k01
1

vg
V1•••,

~5!

wherevg is the group velocity of the pulse, and substitu
this relationship into Eq.~4!, retaining terms up to the linea
terms inV, we obtain

E~z,t !5ei (v0t2k0z)
1

2pE dV Ẽ~z50,V!eiV(t2z/vg)

5ei (v0t2k0z)E~z50,t2z/vg!. ~6!

This is the well-known result~Ref. @5#, pp. 322–326! that a
pulse propagates unchanged in shape in a weakly dispe
medium, apart from an overall phase factor, and that
velocity of propagation is given by the group velocity of th
pulse vg defined from the dispersion relationship as
Eq. ~5!.

As discussed by Yarivet al. @2#, we can describe a CROW
comprised of weakly coupled resonators with the tig
binding approximation commonly used in solid-state phys
to describe electronic states in semiconductors with impu
doping ~Ref. @6#, Chap. 10!. There are slight differences i
the treatment presented here as compared to Ref.@2#, in order
to make the correspondence between the usual descriptio
the tight-binding method in solid-state physics and the ab
description of pulse propagation more direct. The tim
independent waveguide mode~eigenmode! of an infinitely
long CROWfk(z) with wave vectork is a linear combina-
tion of the~normalized! high-Q modesc(z) of a large num-
ber of identical resonators located along thez axis with inter-
resonator spacingR:

fk~z!5(
n

e2 iknRc~z2nR!. ~7!

We write k0 as the wave vector corresponding to the cen
optical frequencyv0 as defined by Eq.~5!, and normalize the
eigenvectors in a CROW comprised ofM identical resona-
tors:

ME dz uc~z!u251. ~8!

Equation~7! may be written in terms ofV rather thank
by expandingk(v01V) in a Taylor series nearv0 as in Eq.
~5!:

fV~z!5(
n

e2 ik0nRc~z2nR!e2 iVnR/vg. ~9!

For an input pulse of the form of Eq.~1!, the field at a
distancez, analogous to Eq.~4!, is given by
06660
ive
e

-
s
y

of
e
-

r

E~z,t !5eiv0t
1

2pE dV Ẽ~z50,V!fV~z!eiVt

5eiv0t(
n

e2 ik0nRc~z2nR!

3
1

2pE dVẼ~z50,V!eiV[ t2(nR)/vg] . ~10!

The term on the last line of the above expression is me
the n-dependent shifted replica of the original input env
lope; it follows from Eq.~2! that

E~z,t !5eiv0t(
n

e2 ik0nRc~z2nR!ES z50,t2
nR

vg
D .

~11!

In our description of the holographic process, we w
need an expression for the spatial Fourier transform~in K
space! of E(z,t),

Ẽ~K,t ![E E~z,t !e2 iKzdz5eiv0t(
n

I n~K,t !, ~12!

where

I n~K,t ![e2 ik0nRF E dze2 iKzc~z2nR!GES z50,t2
nR

vg
D

5e2 i (K1k0)nRc̃~K !ES z50,t2
nR

vg
D . ~13!

Therefore,

Ẽ~K,t !5eiv0t(
n

e2 i (k01K)nRc̃~K !ES z50,t2
nR

vg
D .

~14!

Equations~11! and~14! form the main conclusions of this
section, and describe pulse propagation in any medium~par-
ticularly a CROW! for which the eigenmodes are describ
by the tight-binding assumption@Eq. ~7!#, and the dispersion
relationship is approximately linear as in Eq.~5!. It is known
that away from the band edges, such a dispersion relat
ship fits a CROW quite well@2#. The formulation of
Eqs.~11! and~14! in a structure of finite length is discusse
in Ref. @7#.

II. PHOTOREFRACTIVE HOLOGRAPHY IN A CROW

If we design the CROW in a photorefractive medium, w
can form a dynamic hologram of the signal pulse via int
ference with a reference pulse as shown in Fig. 2; the
duced index grating persists in the photorefractive medi
after the pulses have propagated away and contains al
necessary amplitude and phase information to~classically!
reconstruct the signal pulse@8#. In this paper we will carry
out an analysis for the scenario depicted in Fig. 2~a!.
2-2
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OPTICAL PULSE PROPAGATION AND HOLOGRAPHIC . . . PHYSICAL REVIEW E 64 066602
We will use the symbolst8 and t to denote the tempora
coordinates at the time of writing the hologram and at
time of reconstruction, respectively. In general,t5t82T for
some time intervalT. Based on the geometry shown, w
assume that two pulsesE1(z50,t8) andE2(z5L,t8) are in-
put at the two opposite ends of a CROW. The pulses pro
gate in opposite directions with wave vectorsk1 and 2k2
and group velocitiesv1 and v2 respectively. The total field
E(z,t8) is given by the sum of the fields due to these tw
pulses, and, inK space, can be written as

Ẽ~K,t8!5eiv1t8(
n

e2 i (k11K)nRc̃~K !E1S z50,t82
nR

v1
D

1eiv2t8(
m

e2 i (2k21K)mRc̃~K !E2S z5L,t82
mR

v2
D ,

~15!

analogous to theK-space representation of a single puls
@Eq. ~14!#.

The holographic gratingdn(z,t8) is produced by the in-
terference pattern of the spectral components of this field~for
example, atK1 andK2) weighted by a complex proportion
ality coefficient dn(K1 ,K2) which represents the photore
fractive coupling coefficient between two plane waves
fined byK1 andK2. This coefficient depends on the mater
properties, the orientation of the medium, and the polar

FIG. 2. Schematic diagram of the volume holography us
pulse collision recording in~a! a counterpropagating geometr
~reflection-type holography! and ~b! a copropagating geometr
~transmission-type holography!. After Fig. 15.3 in Fainmanet al.
@10#.
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tion of the waves@8,9#. Using the inverse Fourier transform
to write theK space field@Eq. ~15!# in terms ofz, the grating
is

dn~z,t8!5
1

F0
ei (v12v2)t8(

n,m
E dK1

2p

dK2

2p
e2 i (K12K2)z

3dn̂~K1 ,K2! e2 i (k11K1)nRe2 i (2k21K2)mR

3E1S z50,t82
nR

v1
D E2* S z5L,t82

mR

v1
D

3c̃~K1!c̃* ~K2!1c.c., ~16!

where F0 is the total optical power. We assume that th
grating persists temporally, so that at a later timet, dn(z,t)
5dn(z,t8) and we can relabel the temporal coordinatet8 to
t in Eq. ~16! to describe the reconstruction process. We w
only focus on the term in Eq.~16! written out in full, with the
remark that analogous results hold for the complex conjug
term ~written in Eq. ~16! as c.c.!—this term will ultimately
give rise to a field propagating in the direction opposite
that of E1, and is not of interest in this discussion.

We use a backward-propagating reference pulseEr(z,t) to
illuminate the grating, and preserve its distinction from t
reference pulse at the time of grating formationE2(z,t) to
maintain the generality of this discussion. At a later stage,
will assume that these two pulses are in fact identical, a
simplify the expressions appropriately. We can writeEr(z,t)
in the Fourier domain using Eq.~14!:

Ẽr~Kr ,t !5E dKr

2p
eivr t(

p
e2 i (2kr1Kr )pR

3c̃~Kr !Er S z5L,t2
pR

v r
D . ~17!

Upon illumination byEr(z,t), the polarization driving the
propagation equation@8# for the reconstructed fieldEc(z,t) is
given by

Pc~z,t !5dn~z,t !Er~z,t !. ~18!

The evolution of the reconstructed fieldEc(z,t) will follow
that of the original signal fieldE1(z,t) if this polarization
@Eq. ~18!# can be shown to be proportional toE1(z,t); the
multiplicative constant in this relationship includes the thir
order susceptibilityx (3) rather than the linear susceptibilit
x (1), since the gratingdn(z,t) given by Eq.~16! is propor-
tional to the product of two optical fields@8#.

We can multiply both sides of Eq.~18! by exp(2iKcz),
and integrate overz to write Eq.~18! in Fourier-transformed
K space. In doing so, we use Eqs.~16! and ~17!, which de-
scribe the grating and the reference pulse, to obtain

g

2-3
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P̃c~Kc ,t !5
1

F0
ei (v12v21vr )t (

n,m,p
E dK1

2p

dK2

2p

dKr

2p
dn̂~K1 ,K2!H E dzei (K12K21Kr2Kc)zJ

3 e2 i (k11K1)nRe2 i (2kr1Kr )pRei (2k21K2)mRc̃~K1!c̃~Kr !c̃* ~K2!E1S z50,t2
nR

v1
D

3Er S z5L,t2
pR

v r
DE2* S z5L,t2

mR

v2
D . ~19!

The phase-matching integral overz can be approximated by 2pd(K12Kc)d(K22Kr), and we can carry out the integra
over K2 andK1. We write Kr[K8 andKc[K to generalize the notation. In order to focus the discussion on a hologra
reconstruction of the signal pulse, we now assume thatEr(z5L,t)5E2(z5L,t8)u t85t , kr5k2 , v r5v2 , andv r5v2, i.e., we
use a replica of the reference write-in pulseE2 ~in the original temporal coordinatet8) as the reference reconstruction puls
Then, Eq.~19! becomes

P̃c~Kc ,t !5eiv1t(
n

e2 i (k11K1)nRc̃~K1!E1S z50,t2
nR

v1
D F 1

2pF0
E dK8

2p
dn̂~K,K8!

3(
m,p

e2 i (2k21K8)pRei (2k21K8)mRc̃~K8!c̃* ~K8!E2S z5L,t2
pR

v2
DE2* S z5L,t2

mR

v2
D G . ~20!
th

pa

d,

as
of
-

a-
The term in square brackets in Eq.~20! can be written as

@•••#5
1

2pF0
E dK8

2p
dn̂~K,K8!G~K8,t !G* ~K8,t !,

~21!

where

G~K8,t !5(
p

e2 i (2k21K8)pRc̃~K8!E2S z5L,t2
pR

v2
D .

~22!

We can multiply G(K8,t) by exp(iv2t) without changing
Eq. ~21!.

Then, using the relationship established in Eq.~14!,

P̃c~K,t !5 Ẽ1~K,t !3h~K,t !, ~23!

where

h~K,t !5
1

2pF0
E dK8

2p
dn̂~K,K8!uẼ2~K8,t !u2. ~24!

We assume that the photorefractive properties of
CROW characterized bydn̂ are spectrally nonselective:

dn̂~K,K8![dn̂d~K2K8! for all K andK8. ~25!

Further, we assume that the~backward-propagating! refer-
ence pulses are intense and narrow, i.e., the input free-s
reference pulseE2(z5L,t) is given by

E2~z5L,t !5eiv2tE0d~ t2t0!. ~26!

The corresponding field in the CROW is given by Eq.~14!:
06660
e
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Ẽ2~K8,t !5E0eiv2t(
m

ei (2k21K8)mR

3c̃~K8!dS t2t02
mR

v2
D . ~27!

Next, if the individual resonator modes are highly localize
c(z)5ĉd(z2z0), we can write

Ẽ2~K8,t !Ẽ2* ~K8,t !5uE0u2 uĉu2 (
m,m8

e2 i (2k21K8)(m2m8)R

3FdS t2t02
mR

v2
D dS t2t02

m8R

v2
D G .
~28!

For cumulative power transfer over a finite time interval,
given by integrating the above expression over a regiont
comparable to or greater thanR/v2, the term in square brack
ets in Eq.~28! can be replaced by the Kronecker deltadmm8 ,
and the result is

Ẽ2~K8,t !Ẽ2* ~K8,t !5uE0u2uĉu2M , ~29!

whereM is the number of resonators. Using the normaliz
tion relationship Eq.~8!, we can simplify Eq.~24!,

h~K,t !5
1

~2p!2F0

dn̂uE0u2, ~30!

which is a constant[ĥ, and therefore,
2-4
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P̃c~K,t !5ĥẼ1~K,t !. ~31!

This shows that the polarization term driving th
evolution of the reconstructed pulse is indeed proportio
to the input signal pulse, as it would be for the input sign
pulse itself. Note that the scaling constant is depend
on the intensity of the reference pulse, but for we
signal pulses, the total field intensity is dominated by
reference andF0'uE0u2 so that the two factors cance
each other.

III. DISCUSSION

The earlier sections have described pulse propagation
CROW, and have shown that photorefractive holography
short and intense reference pulses in a weakly coup
CROW with spectrally nonselective photorefractive prop
ties exactly reconstructs the signal pulse. In this section
point out two features of the CROW that make it particula
suitable for such holographic pulse storage and reconst
tion processes.

As discussed by Yarivet al. @2#, it has been shown that, i
a weakly coupled CROW, the dispersion relation for a wa
guide mode is approximately

vk5vDF11
Da

2
1k cos~kR!G , ~32!

in terms of the single-resonator mode frequencyvD , a
coupling factork, and an overlap integralDa. ~Although
the single defect cavity modes are actually doubly dege
ate, the two resultant CROW bands have opposite polar
and cannot couple to each other; therefore, the disper
relation of each band has the same form as the above ex
sion @11#.! In an earlier analysis, we have assumed that
central wave vectork0 corresponds to a linear section of th
curve; an analysis using the form of Eq.~32! is presented
elsewhere. Thek-dependent group velocity~Ref. @8#, p. 37!
is given by

vg~k!5
dvk

dk
52vDRk sin~kR!, ~33!

which can be made quite small~e.g., vg'1023 times the
group velocity in a medium with spatially uniform dielectr
properties and refractive indexn2) for a weakly coupled
CROW @11#, and for sufficiently narrow band pulses. B
cause of this reduction in group velocity, an optical pu
propagating in the CROW is compressed by a factor 1vg
relative to its spatial extent in free space. Spatial comp
sion of pulses is also observed in electromagnetically
duced transparency@12#, where the slow group velocity is
the result of the steep slope of the refractive index. In
case of the CROW, the slow group velocity is a conseque
of the weak evanescent coupling between the individ
high-Q modes that comprise the propagating eigenmode
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the waveguide. A CROW designed for a factor of 1023 re-
duction in group velocity will permit a Gaussian pulse
temporal duration 150 ps to be completely contained in
waveguide of length 100mm.

Photorefractive holography of single pulses has be
difficult because of the low efficiency of the proces
and usually, multiple write-in procedures of thousands
repeated pulses are necessary to obtain a sufficie
strong quasi-steady state grating. In a CROW, the hig
concentrated optical field can also enhance this aspect o
photorefractive effect. The propagating power fluxP in a
CROW is proportional to the group velocity of the CROW
band@2#,

P5
1

8pR
vgE0

2 , ~34!

and, therefore, we can obtain a higher optical field
a given power flux because of the reduction in gro
velocity. Consequently, the time constant which determi
the photorefractive response time~and which varies linearly
with the intensity @8#! is reduced by a factorvg'1023

compared to the group velocity in a medium with spatia
uniform dielectric properties and refractive indexn2. The
quasi-steady-state equilibrium is reached with orders
magnitude lower intensities in a photorefractive CROW
compared to a photorefractive bulk medium. As pointed
by Yeh @13#, the fundamental limit on the speed of th
photorefractive effect depends on the intensity rather than
phenomenological parameters induced by doping or h
treatment.

In summary, we have analyzed optical pulse propaga
in a coupled-resonator optical waveguide~CROW!, and pro-
pose a method for the storage and reconstruction of op
pulses using photorefractive holography in a CROW. T
advantages of this method include a substantial reductio
the group velocity, leading to a spatial compression of
signal pulse so that it may be contained in a relatively sh
waveguide compared to the spatial extent of the pulse in
space. The highly localized field distribution enhances
photorefractive effect, and we have examined in detail
process of the formation of the grating and the reconstruc
of the signal pulse by holography. There are many poss
applications of such room-temperature, compact, nondest
tive, and low-intensity pulse storage mechanisms; two
portant ones are buffers for optical switches and correla
for optical measurement devices.
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